In this episode, we cover motivation and emotion–key concepts that will show up in the Psychological, Social, and Biological Foundations of Behavior section of the MCAT. We start with the difference between intrinsic and extrinsic motivation. We then go into various theories including evolutionary, arousal, drive-reduction, incentive, three needs theory, Maslow’s hierarchy, and the correlation between harmful behaviors like addiction and motivation. Lastly we get into emotion, covering its three components, the relationship between emotion and the brain, and an array of theories including evolutionary, James-Lange, Cannon-Bard, Schachter-Singer, Lazarus, and facial feedback theories. Additionally, we discuss the influence of culture on emotion and delves into emotional disorders. Visit MedSchoolCoach.com for more help with the MCAT. Jump Into the Conversation: [00:00] Introducing MCAT Basics [02:09] Defining Motivation [03:00] The difference between intrinsic and extrinsic motivation [04:30] Theories of Motivation - Evolutionary, Arousal, Drive-reduction, Incentive, Three Needs and Maslow’s Hierarchy, [19:30] The correlation between harmful behaviors like addiction and motivation. [26:07] Defining emotion [27:50] The psychological, cognitive, and behavioral components of emotion [31:11] The theories of emotion - evolutionary perspective of emotion, James Lang theory, the Cannon Barr theory, and the Schachter Singer theory. [41:09] The facial feedback theory [46:28] Emotional disorders that you're most likely to see on the MCAT- depressive disorders anxiety based disorders, obsessive compulsive disorder, and bipolar disorders.
Transcribed - Published: 24 July 2025
In this episode, we focus on the cardiovascular system and its connection to fluid mechanics. Beginning with an exploration of cardiovascular anatomy, the discussion covers various aspects of the heart: its function, contraction mechanism, the diverse cell types found within it, and its essential role in regulating blood pressure. Finally, in the latter part of the episode, several fluid mechanics topics pertinent to the MCAT and their application to the cardiovascular system are addressed. These include total peripheral resistance, viscosity, the continuity equation, and the Bernoulli equation, offering insights into their relevance in understanding cardiovascular dynamics. Visit MedSchoolCoach.com for more help with the MCAT. [00:00] Intro [02:32] Circulatory system overview [08:48] Blood's journey from the heart through systematic circulation [11:49] The reason the heart needs one-way valves [15:14] The path of blood flow through the body [16:52] Function of the heart [22:21] QRS complex [24:24] Cells that make up the heart [28:33] Hormonal control of blood pressure and its relationship to the heart [40:39] Application of physics fluids to cardiovascular system [43:31] Peripheral resistance [48:38] Viscosity [51:54] Continuity equation [55:02] Bernoulli equation
Transcribed - Published: 22 July 2025
This podcast addresses translational motion. First, vectors are covered. Then, the variables of acceleration, velocity, and position are discussed. Next, the host discusses the relationship between those three variables. Finally, it covers free fall, projectile motion, air resistance, and friction. The example link for this segment is provided here: Geogebra Example Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutoring from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:06] Topics covered in this episode [01:57] What is translational motion [04:08] Vectors [14:21] Velocity, acceleration, and position/displacement [20:08] The relationship between acceleration, velocity, and position [34:53] Free fall and projectile motion [44:40] The four equations to know for projectile motion [47:20] Air resistance and friction
Transcribed - Published: 17 July 2025
This podcast explores cell organelles, organized into five categories: organelles found in all cells, eukaryotic cells, plant and bacterial cells, human and bacterial cells, human cells only, and plant cells only. The organelles discussed include ribosomes, vacuoles, cytoskeleton, plasma membrane, peroxisome, proteasome, nucleus, nucleolus, smooth and rough endoplasmic reticulum, Golgi apparatus, lysosome, cell wall, flagella, mitochondria, melanosome, and chloroplasts. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutoring from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:06] Topics covered in this episode [01:59] Definition of “Cell Organelles” [03:59] Organelles found in all cells - ribosomes, vacuoles, cytoskeleton, plasma membrane, peroxisome, proteasome [22:42] Organelles that show up in eukaryotes only - nucleus, nucleolus, smooth and rough endoplasmic reticulum, Golgi apparatus, lysosome [40:03] Orgnalles shared by plants and bacteria - cell wall and flagella [46:40] Organelles found in human cells only - mitochondria, melanosome, and chloroplasts
Transcribed - Published: 15 July 2025
This podcast discusses chemical kinetics and solubility. It begins with an exploration of kinetics, including the general concept, collision theory, rate laws, and the Arrhenius equation. Next, it delves into solubility, covering the general concept, solubility product (Ksp), the common ion effect, selective precipitation, and Henry’s law. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutoring from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:06] Topics covered in this episode [02:37] What is general kinetics [08:53] Collision Theory [11:08] Rate Laws [21:15] Arrhenius Equation [28:00] What is Solubility [32:08] Solubility Product (Ksp) [43:49] The Common Ion Effect [45:22] Selective precipitation [48:35] Henry’s Law
Transcribed - Published: 10 July 2025
This lecture covers basic quantum theory, quantum numbers, hybridization, types of bonds, and nuclear decay. Please email me if you have any comments or concerns: [email protected] To learn more about how MedSchoolCoach can help you along your medical school journey, visit us at Prospective Doctor. Thanks for listening!
Transcribed - Published: 8 July 2025
This podcast is the first in a series of lectures covering genetics. I cover the following topics: brief history of basic genetic principals, evolution, chromosomal theory (including mutations), mitosis and meiosis, and inheritance patterns. Please email me if you have any comments or concerns: [email protected] To learn more about how MedSchoolCoach can help you along your medical school journey, visit us at Prospective Doctor. Thanks for listening!
Transcribed - Published: 3 July 2025
This MCAT podcast covers the respiratory system. First, I cover the anatomy of the respiratory system. Then, I dive into its main functions: Gas exchange (breathing mechanisms here too) Thermoregulation Particle filtration pH control Lastly I talk about how the respiratory system is controlled. Please email me if you have any comments or concerns: [email protected] To learn more about how MedSchoolCoach can help you along your medical school journey, visit us at Prospective Doctor. Thanks for listening!
Transcribed - Published: 1 July 2025
MCAT Basics+ covers the highest yield science content tested on the MCAT in even greater depth and clarity, helping you study smarter and achieve your highest possible score. MCAT Basics+ is entirely ad-free, letting you stay completely focused. If you've enjoyed MCAT Basics, we genuinely believe you're going to love MCAT Basics Plus.Subscribe on Apple or Spotify to get access to the premium content today.
Transcribed - Published: 26 June 2025
One of the most fundamental biochemical processes is the Krebs cycle. This metabolic pathway plays a critical role in both the Chem Phys and Bio/Biochem sections of the MCAT, so understanding it is key. In this episode, our guest host, Alex Starks, walks us through the transformation of pyruvate into acetyl CoA via the Pyruvate Dehydrogenase Complex (PDC). We’ll explore how thioester bonds help transfer energy within the cycle, how acetyl CoA combines with oxaloacetate to form citrate, the difference between enzymes like synthetases and synthases, and how GTP is produced. We’ll also make connections to the electron transport chain and discuss how the TCA cycle influences blood pH through CO2 production. Visit medschoolcoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:05) Recap of glycolysis and pyruvate (02:45) Pyruvate dehydrogenase complex (PDC) (03:40) Role of acetyl CoA in the Krebs cycle (05:37) How citrate is formed (07:17) How isocitrate is formed (10:00) How alpha-ketoglutarate is formed (13:42) How succinate and GTP are formed (16:28) How succinate, fumarate and oxaloacetate are formed (18:23) Fumarate converted to malate (21:53) Recap of the Krebs cycle and ATP yield (25:00) Regulation of the Krebs cycle (26:16) Quiz
Transcribed - Published: 26 June 2025
In this episode, guest host Alex Starks introduces the Metabolism series by examining glycolysis, a fundamental biochemical pathway for energy production. The discussion covers glucose digestion, the role of insulin and glucose transporters, and the step-by-step breakdown of glucose within cells. Alex also offers a detailed explanation of how glucose is processed to generate energy and outlines the key reactions involved. This episode provides a thorough overview of glycolysis offers valuable study strategies for mastering this topic on the MCAT. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:08) Overview of metabolism and starting the series (02:41) Digestion and absorption of glucose into the bloodstream (04:10) The liver’s role in glucose transport and GLUT2 (05:05) The role of insulin in glucose uptake by muscles and fat cells (07:48) Trapping glucose in the cell with glucose phosphorylation (09:32) Glycolysis Step-by-step breakdown of glycolysis (17:41) NADH and ATP production during glycolysis (22:30) Pyruvate and NADH fates in anaerobic and aerobic respiration (25:12) Quiz: Metabolism quiz and study tips for the MCAT
Transcribed - Published: 24 June 2025
In this episode, we focus on biosignaling and cover how cells communicate through systems like voltage-gated and ligand-gated ion channels, using real-world examples such as neuronal signaling and muscle contraction. We also break down the role of enzyme-linked receptors, specifically receptor tyrosine kinases (RTKs), and explore how these pathways are involved in cell growth and cancer. Additionally, we take a detailed look at G-protein coupled receptors (GPCRs) and their role in activating secondary messenger systems like cyclic AMP (cAMP). Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (00:32) Overview of Biosignaling (01:05) Introduction to Biosignaling and its Importance (01:49) Stimulus-Response Concept: Fight or flight, glucose homeostasis, transcription regulation (02:34) Voltage-Gated Ion Channels: Activated by changes in membrane potential (03:29) Action Potential: Sodium channels and signal propagation (05:01) Ligand-Gated Ion Channels: Role in neuron-to-neuron signaling (06:01) Muscle Contraction: Acetylcholine's role in skeletal muscle contraction (07:29) Misconception on Calcium: Sodium initiates muscle cell depolarization, not calcium (08:33) Enzyme-Linked Receptors: Focus on receptor tyrosine kinases (RTKs) (09:39) RTKs and Cancer: How RTK signaling pathways are linked to cancer (12:00) G-Protein Coupled Receptors (GPCR): Structure and function of GPCRs (14:43) Adenylate Cyclase and cAMP: Role of GTP in activating adenylate cyclase and producing cAMP (18:10) Quiz Question 1: Ion specificity in potassium channels (22:54) Quiz Question 2: Hypertension treatment and G-protein pathways (25:00) Biosignaling as the foundation for cellular responses
Transcribed - Published: 19 June 2025
In this episode, guest host Alex Starks dives into Gas-Phase Concepts for the MCAT. He breaks down the physical properties of gases, explores the ideal gas law, and unpacks the ABCD laws of gases. Alex also covers key conditions that influence molecular collisions in gases and highlights the most important takeaways to help you excel in this section of the exam. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro: Med School Coach promotion and podcast introduction (02:01) Physical properties of gases (06:03) The ideal gas laws (09:40) Conditions that promote molecular collisions in gases (10:34) The ABCD gas law (13:02) The Van der Waals equation (14:33) Gas laws quiz (16:29) Key takeaways
Transcribed - Published: 17 June 2025
In this episode, we focus on the lymphatic system, a crucial topic for the Bio/Biochem section of the MCAT. We'll cover the structure of the lymphatic system, including lymphatic vessels, lymph nodes, and major organs such as the bone marrow and thymus. You'll also learn about the system’s primary functions: returning fluid to the blood, supporting the immune system, and absorbing fats and fat-soluble nutrients. Hosts Sam Smith and Alex Starks break down how the lymphatic system plays a vital role in immunity, nutrient absorption, and fluid balance. By the end of this episode, you'll gain a deeper understanding of the lymphatic system's anatomy and physiology, helping you prepare for MCAT-related questions. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro: Med School Coach MCAT Tutoring Promotion (01:01) Episode Introduction: Lymphatic System Overview (01:07) Co-Host Introduction: Sam Smith and Alex Starks (01:19) Episode Outline: Structure and Functions of the Lymphatic System (02:39) Structure of the Lymphatic System: Vessels, Nodes, and Organs (04:06) Lymph: Composition and Role in the Body (04:44) Lymphatic Vessels and Their Role in Transport (06:50) Primary and Secondary Lymphoid Organs: Bone Marrow, Thymus, and Lymph Nodes (09:10) Bone Marrow and B-Cell Maturation (09:45) Thymus and T-Cell Maturation
Transcribed - Published: 12 June 2025
In this episode, we dive into psychological disorders, a crucial topic for the Psych/Soc section of the MCAT. We’ll start by defining what a psychological disorder is, highlighting key concepts like significant stress and deviant behavior, and discussing how they’re classified using the DSM-5. You'll learn about various categories of disorders, including anxiety disorders, obsessive-compulsive disorders, trauma and stressor-related disorders, and more. We’ll explore the biopsychosocial and biomedical approaches to understanding these conditions, providing insight into the biological, psychological, and social factors that contribute to mental health issues. By the end of this episode, you'll have a comprehensive understanding of the different types of psychological disorders and how they are categorized and treated, helping you tackle related questions on the MCAT. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro: Med School Coach promotion and podcast introduction (01:03) Overview of Psychological Disorders: Episode topics and structure (02:13) Defining Psychological Disorders: Significant stress and deviant behavior (05:29) Biopsychosocial vs. Biomedical Approaches: Holistic vs. traditional perspectives (09:18) DSM-5 Classification of Psychological Disorders: Overview of main categories (10:37) Anxiety Disorders: Fear and anxiety beyond normal levels (16:43) Obsessive-Compulsive Disorder: Obsessions and compulsions explained (18:20) Trauma and Stressor-Related Disorders: PTSD and related disorders (19:19) Somatic Symptom Disorders: Physical symptoms causing mental distress (22:01) Bipolar and Related Disorders: Mood swings and differentiating Bipolar I and II
Transcribed - Published: 10 June 2025
In this episode, we cover the respiratory system, an important topic for the MCAT Bio/Biochem section. We'll go over the anatomy of the respiratory system, highlighting key structures such as the lungs, bronchi, bronchioles, and alveoli, and explain how they contribute to respiratory functions. You'll also learn about the main roles of the respiratory system, including gas exchange, thermoregulation, particle filtration, and maintaining blood pH. We’ll break down the mechanics of breathing, including the role of the diaphragm and intercostal muscles, and how pressure changes drive air into and out of the lungs. We also cover the importance of pulmonary surfactant in preventing alveolar collapse and how partial pressures influence gas movement. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:02) Overview: Functions of the respiratory system (01:28) Main Functions: Gas exchange, thermal regulation, particle filtration, pH control (02:20) Upper Respiratory Tract: Nose, nasal cavity, sinuses, larynx, trachea (05:00) Lower Respiratory Tract: Lungs, bronchi, bronchioles, and alveoli (09:28) Airflow Pathway: How air travels through the respiratory system (10:23) Gas Exchange: Oxygenation and CO2 removal (11:27) Breathing Mechanics: Diaphragm and intercostal muscles (13:04) Pressure Differentials: How pressure changes drive airflow (15:01) Surface Tension in Alveoli: Importance of pulmonary surfactant (18:17) Lung Compliance and Elasticity: How lung tissue stretches and returns to shape (21:48) Gas Exchange Process: Partial pressures of oxygen and carbon dioxide (24:59) Partial Pressure Explained: Role in moving gases during respiration (30:31) Thermoregulation: Maintaining body temperature through respiration (35:59) Particle Filtration: Nasal hairs and mucous cilia system (39:44) pH Regulation: How breathing controls blood pH (41:18) Respiratory Control: Involuntary and voluntary mechanisms, brainstem functions
Transcribed - Published: 5 June 2025
In this episode, we focus on DNA mutations and repair, a key topic for the Bio/Biochem section of the MCAT. We'll cover the different types of mutations, including point mutations, insertions, and deletions, and explain how they occur due to replication errors or environmental factors like UV radiation. You'll also learn about the repair mechanisms that fix these genetic changes, such as direct reversal, mismatch repair, and base excision repair. We’ll also discuss how double-strand breaks are addressed through homologous recombination and non-homologous end joining. By the end of this episode, you'll gain a thorough understanding of how mutations happen and the processes the body uses to repair them, helping you prepare for related MCAT questions. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:07) Overview of DNA Mutations and Repair (01:45) What is a Mutation? (02:30) Mutations During DNA Replication (03:29) DNA Polymerase Slippage: Causes duplication of repeated sequences in DNA (06:15) Mutations Before or After Replication: Caused by mutagens like radiation or chemicals (07:19) Mutagens vs. Carcinogens: Differences between agents that cause mutations and those that cause cancer (09:56) Types of Mutations: Overview of point mutations, insertions, and deletions (12:00) Frameshift Mutations: How insertions or deletions shift the reading frame (29:50) Chromosomal Mutations: Inversions and translocations (35:35) DNA Repair Mechanisms: Introduction to replication repair, mutation repair, and break repair (36:51) Proofreading by DNA Polymerase: Repairing replication errors (39:20) Direct Reversal DNA Repair: Enzymes directly fix damaged DNA (40:41) Mismatch Repair: Fixing base mismatches and insertion-deletion loops (43:25) Base Excision Repair: Correcting single-base mutations (46:03) Nucleotide Excision Repair: Fixing bulky DNA damage like pyrimidine dimers (47:56) Interstrand Cross-Link Repair: Repairing DNA strands covalently cross-linked together (50:27) Single-Strand Break Repair: Ligating broken DNA strands back together (51:16) Double-Strand Break Repair: Homologous recombination and non-homologous end joining (54:13) Summary of DNA repair mechanisms
Transcribed - Published: 3 June 2025
In this episode, we focus on the structure and role of key social institutions for the MCAT Psych/Soc section. We'll break down the five major institutions—health and medicine, education, family, religion, and government—and explain how each shapes societal norms and individual behavior. You’ll learn about concepts like medicalization, the sick role, and how healthcare is delivered, as well as the hidden curriculum and educational segregation. We’ll also cover family structures, kinship types, and how religion influences social change. Lastly, we’ll touch on political systems and the difference between power and authority, all of which are important for the MCAT. By the end, you’ll be equipped to understand how these institutions impact society and approach related MCAT questions with confidence. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) Introduction to Social Institutions (01:54) Definition of Social Institutions (04:24) Formal vs. Informal Institutions (05:03) Health and Medicine: Structure and Function (07:49) Medicalization and the Sick Role (09:56) Delivery of Healthcare (12:18) Illness Experience (13:59) Social Epidemiology (17:05) Education: Structure and Function (19:37) Educational Segregation and Stratification (24:03) Teacher Expectancy (25:06) Family: Structure and Function (28:46) Violence in the Family (29:26) Religion: Structure and Function (32:25) Religion and Social Change (35:43) Government and Economy: Structure and Function (37:11) Power vs. Authority (38:23) Types of Political Systems (41:06) Division of Labor
Transcribed - Published: 29 May 2025
In this episode, we break down aromatic compounds, a crucial topic for the Biochem and Chem/Phys sections of the MCAT. You’ll learn what makes a compound aromatic, how to identify them using Huckel’s Rule, and the difference between aromatic, antiaromatic, and nonaromatic compounds. Sam Smith covers key examples like benzene, toluene, and phenol, and explains their role in biological systems like DNA and the electron transport chain. With practical tips and MCAT-focused insights, you'll be ready to tackle questions on aromatic compounds with confidence. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Introduction and Med School Coach Promotion (01:03) Introduction to the Topic: Aromatic Compounds (02:08) Definition of Aromatic Compounds and Electron Delocalization (04:43) Explanation of Huckel’s Rule and Aromaticity Criteria (07:59) Introduction to Antiaromatic Compounds (09:58) Definition of Polycyclic and Heterocyclic Aromatic Compounds (12:02) Common Aromatic Compounds to Know: Benzene, Toluene, Phenol, Aniline (14:54) Properties of Aromatic Compounds: Physical, Stability, Fluorescence, Basicity (20:15) Aromatic Compounds in Biology: Amino Acids, DNA/RNA, Electron Transport Chain (28:14) Conclusion and Outro
Transcribed - Published: 27 May 2025
Aging is an essential topic for the MCAT, and in this episode, we’ll explore it from multiple angles. We start with the biological aspects of aging, including key processes like telomere shortening, cell senescence, and mitochondrial dysfunction—each providing insight into how and why cells age. From there, we dive into how aging impacts the brain, including the types of memory and cognitive functions that either decline or improve with age. Lastly, we’ll cover the sociology of aging, focusing on the life course theory, the social significance of aging, and demographic changes. Expect a comprehensive breakdown of these concepts, with real-world applications and examples to reinforce your understanding. Visit MedSchoolCoach.com for more help with the MCAT. Jump Into the Conversation: (00:00) Intro (02:30) Cellular markers of aging: Protein aggregation and telomere shortening (04:55) Exploring cell senescence and autophagy dysregulation (07:20) Mitochondrial dysfunction and its role in cellular aging (09:10) Deep dive into telomeres and the Hayflick Limit (12:30) Introduction to aging in the brain (13:45) Memory and cognitive functions that remain stable with age (15:30) Brain functions that improve as we age: Crystallized intelligence and emotional intelligence (17:00) Brain functions that decline with age: Episodic memory and processing speed (19:30) Causes of changes in brain function: Brain size, vasculature, and neurotransmitter levels (22:15) Introduction to the life course theory and its relation to aging (24:45) The social significance of aging in different cultures (26:00) The aging population and its impact on healthcare
Transcribed - Published: 22 May 2025
In this episode, we focus on personality and the theories relevant for the MCAT. We’ll cover key perspectives, such as psychoanalytic theory, humanistic theory, and trait theory, along with the influence of social cognitive and biological factors on personality development. You’ll get an overview of the different personality disorders, categorized into clusters like odd or eccentric behavior, dramatic or erratic behavior, and anxious or fearful behavior. You’ll also gain an understanding of specific disorders, including narcissistic personality disorder, antisocial personality disorder, and obsessive-compulsive personality disorder. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:01) Introduction to Personality (01:41) Defining Personality (03:27) Overview of Personality Theories (06:11) Psychoanalytic Theory: Id, Ego, and Superego (09:03) Humanistic Theory: Achieving Individual Potential (10:16) Trait Theory: Stable Traits Over Time (11:06) Five-Factor Model of Personality (12:08) Social Cognitive Theory: Learning and Cognition (13:18) Biological Theory: Genetic Influences on Personality (15:10) Behaviorist Theory: Environmental Shaping of Personality (16:39) Introduction to Personality Disorders (19:19) Cluster A: Odd or Eccentric Behavior Disorders (22:26) Cluster B: Dramatic, Emotional, or Erratic Behavior Disorders (26:13) Cluster C: Anxious or Fearful Behavior Disorders (28:24) OCD vs. OCPD: Key Differences (29:40) Overlap Between Personality Disorder Clusters
Transcribed - Published: 20 May 2025
In this episode, we cover molecular structure and the key spectroscopy techniques you need to know for the MCAT. We'll explore the intricacies of Nuclear Magnetic Resonance spectroscopy, breaking down the chemical shifts and spin-splitting essentials for understanding hydrogen and carbon bonds in various compounds. You'll learn how to identify functional groups using Infrared (IR) spectroscopy and how mass spectrometry can help determine molecular weights and identify unknown compounds. We'll also touch on UV-Vis spectroscopy and its role in quantifying compounds based on absorption spectra. Visit MedSchoolCoach.com for more help with the MCAT. (00:00) Intro (01:50) Introduction to absorption spectra and molecular structure (01:52) Absorption spectroscopy and its applications (03:39) IR spectroscopy: Analyzing functional groups with infrared radiation (07:57) Key IR peaks to know for the MCAT (09:52) Visible light and its role in determining compound color (10:57) UV-Vis spectroscopy: Connecting visible and ultraviolet light for compound analysis (14:06) Quantifying compounds using UV-Vis spectroscopy and Beer's Law (16:48) Mass spectrometry: Determining molecular weight and identifying compounds (22:18) Interpreting mass spectrometry graphs and calculating molecular weight (26:44) NMR spectroscopy: Understanding molecular structure through proton shifts (31:23) Key NMR shifts to know for the MCAT (33:21) Spin splitting in NMR and the n+1 rule
Transcribed - Published: 15 May 2025
The Doppler Effect is a crucial concept for the MCAT, particularly in the Chemistry & Physics section. We'll explore how the Doppler effect occurs when a wave source moves relative to an observer, affecting the observed frequency and wavelength. Using practical examples like an ambulance speeding towards you, we'll bring these concepts to life. We'll also break down the Doppler effect equation, examining what it reveals—and what it doesn’t—about wave behavior. By the end of this episode, you'll have a solid understanding of The Doppler effect and will be ready to tackle any related questions on the MCAT. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Introduction to the MCAT Basics (02:09) Conceptual Explanation of the Doppler Effect (03:55) Example: Doppler Effect with an ambulance (04:55) Speed of sound and wave propagation (05:31) Impact of ambulance motion on sound wave speed (06:37) Relationship between wave speed and frequency (07:30) Detailed explanation of sound frequency (08:45) Introduction to the Doppler Effect equation (10:08) Proportionality in the Doppler Effect equation (11:08) Discussion on wavelength and frequency relationship (12:29) Application of the Doppler Effect equation
Transcribed - Published: 13 May 2025
In this episode, we cover the topic of viruses. We explore a comprehensive range of subtopics including the definition and structure of viruses, their life cycles, and the differences between transduction and transfection. We also discuss virus classification, viral mutations, and subviral particles. This material will primarily appear in the Bio/Biochem section of the MCAT. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] Introduction [01:57] Definition of a virus [02:55] Virus structure [10:41] The viral life cycle [17:34] The bacteriophage life cycle [21:40] The retrovirus life cycle [21:40] The retrovirus life cycle [27:11] Virus classification [32:09] Viral mutation [40:31] Subviral particles
Transcribed - Published: 8 May 2025
In this episode, we cover the topic of work and energy. We’ll start off by talking about work, which includes the mathematical and conceptual definitions and the sign convention of work. We’ll also talk a little bit about mechanical advantage and also path dependency. Moving on to energy, we’ll talk about the general definition of energy, we’ll compare and contrast energy in work and the different types of energy that includes kinetic energy, potential energy, thermal energy, and total mechanical energy. Lastly, we’ll talk about energy transfer, specifically heat transfer, and the three types of convection, conduction, and radiation. Visit MedSchoolCoach.com for more help with the MCAT. Jump Into the Conversation: 00:00 Introduction 05:27 Summary: Limits of equation for work and force 08:39 Positive work: force and displacement in same direction 09:32 Comparison of mechanical and thermodynamic work sign conventions 12:50 Work changes kinetic energy of moving objects 16:32 Friction and energy 22:25 Pitching 27:10 Kinetic and potential energy relation 32:14 Sun and heat transfer
Transcribed - Published: 6 May 2025
In this episode, we’ll nail down all that is needed for the MCATB in relation to fat and protein metabolism. Two critical processes for gaining energy and maintaining cellular functions in the body. We'll learn about the intricate details of beta-oxidation, where fatty acids are broken down in the mitochondrial matrix to produce energy-rich molecules like NADH, FADH2, and acetyl CoA. From protein catabolism, where proteins are broken down into amino acids that feed into gluconeogenesis and ketosis pathways, to protein anabolism, where these amino acids are incorporated into new proteins. You'll get insights into the role of amino acids in synthesizing other compounds like serotonin and nucleotides. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: 00:00 Introduction to MCAT Basics 01:25 Fat metabolism 02:00 Fat absorption 06:45 Breakdown of fats 08:30 Lipolysis 10:15 Transport of fatty acids 11:20 Beta oxidation pathway 13:40 Energy yield from beta-oxidation 16:00 Odd-chain and unsaturated fatty acids in beta-oxidation 20:00 Differences in energy production and pathways. 22:29 Fatty acid synthesis 25:15 Ketone body formation and usage 28:00 Protein breakdown (catabolism) 31:45 Glucogenic and ketogenic amino acids 35:00 Protein synthesis (anabolism)
Transcribed - Published: 1 May 2025
Social norms and deviance as covered in the MCAT is a fascinating topic, and in this episode, we'll break down the intersection of social norms—folkways, mores, taboos, and laws—how they play a crucial role in shaping societal values, and what happens when these norms break down, a concept known as anomy. Plus, we'll delve into collective behavior phenomena such as fads, mass hysteria, moral panic, and riots, touching on some real-life examples and historical comparisons. Expect a comprehensive overview, with real-world relevance and plenty of examples to help solidify your understanding. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] Introduction to the MCAT Basics [04:57] Breaking social norms is not a big deal. [09:00] Jeffrey Dahmer was a serial killer. [12:41] Breaking social norms, deviance explained in theories. [14:03] Biking under influence leads to deviant identity. [19:02] Weak community ties breed crime, social disorganization theory. [20:20] Cultural deviance theory explains lower class deviance. [23:39] Social control theory emphasizes individual responsibility for deviance. [26:58] Orson Welles's 1938 radio drama causes hysteria.
Transcribed - Published: 29 April 2025
In this episode, we discuss population genetics and see how genetically related individuals share the same alleles, delving into the mechanisms of gene flow and genetic drift. We'll also unravel the complexities of hybrid vigor, reproductive isolation, and natural selection, and how these processes shape the genetic landscape of populations. We'll also touch on the fascinating dynamics of X-linked and mitochondrial inheritance, and the role of genomic imprinting in disease risk. Ever wondered how the Hardy-Weinberg equation helps us understand genetic equilibrium in populations? We've got that covered too, breaking down the assumptions and applications of this essential model. Plus, we'll delve into how allele frequencies can shift due to factors like mutations and population bottlenecks. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] Introduction to the MCAT Basics [01:06] Overview of Population Genetics [01:55] Definition of Population Genetics [03:01] Genotype vs. Phenotype [03:38] Example of BRCA1 Gene [07:33] Autosomal Dominant and Recessive Inheritance Patterns [08:40] X-Linked Inheritance Patterns [09:38] Mitochondrial Inheritance [10:46] Genomic Imprinting [12:46] Complex and Multifactorial Inheritance [13:52] Introduction to Hardy Weinberg Equation [14:33] Assumptions of Hardy Weinberg Equation [15:16] Historical Context of Hardy Weinberg Equation [17:02] Calculation of Allele Frequencies [19:18] Example Problem Using Hardy Weinberg Equation [23:17] Limitations of Hardy Weinberg Equation [24:07] Ways Populations Change Over Time [24:58] Natural Selection [27:10] Fecundity and Fertility in Natural Selection [28:07] Types of Natural Selection [30:00] Mutation [32:17] Example of Mutation in HIV Research [34:29] Genetic Drift [38:11] Gene Flow and Gene Leakage [40:12] Hybrid Vigor and Reproductive Isolation [42:16] Prepare for MCAT success with MedSchoolCoach.
Transcribed - Published: 24 April 2025
In this episode, we'll explore three crucial hormone axes: the hypothalamic-pituitary-adrenal (HPA) axis, the hypothalamic-pituitary-gonadal (HPG) axis, and the renin-angiotensin-aldosterone (RAAS) system. We'll decode the complex interplays among the hypothalamus, pituitary gland, and various peripheral organs, focusing on how these hormone systems regulate everything from stress responses and reproductive functions to blood pressure and fluid balance. We'll break down the HPA axis and its pivotal role in stress response, featuring hormones like corticotropin-releasing hormone (CRH) and cortisol. Next, we’ll navigate through the HPG axis to understand the hormonal orchestration behind testosterone, estrogen, and progesterone production. Lastly, we’ll zero in on the RAAS system, demystifying its essential function in blood pressure regulation and electrolyte balance. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] Introduction to the MCAT Basics Podcast with host, Sam Smith [03:11] Hypothalamus: brain section, regulates hormones, monkey bread. [08:57] Hypothalamus releases hormones to stimulate pituitary gland. [12:12] Cortisol is a crucial stress response hormone. [13:12] Steroid hormones need carrier proteins for transport. [17:05] Hypothalamic pituitary gonadal axis involves important structures. [21:01] Hypothalamus releases gonadotropin hormone for sex development. [27:14] Sex hormones regulate important body functions through feedback. [28:31] Juxtaglomerial cells respond to changes in blood pressure. [33:20] Angiotensin III and IV stimulate aldosterone release. [35:36] Renin angiotensin system increases sodium, blood pressure.
Transcribed - Published: 22 April 2025
In this episode, we're covering the anatomy and physiology of key organs such as the kidneys, liver, skin, lungs, and large intestine, and discuss the crucial role they play in eliminating waste products from our bodies. From the structure of the hepatic lobules in the liver to the sweat glands in our skin and the alveoli in our lungs, we'll cover how each component functions to maintain homeostasis. We'll also delve into the metabolic breakdown processes and the excretion of waste molecules such as urea, electrolytes, and gases like carbon dioxide. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] Introduction to the MCAT Basics Podcast with host, Sam Smith [04:50] Kidney, adrenal glands, nephrons filter blood. Bladder stores waste connected to kidneys. [09:57] Liver has lobes and functional hepatic lobules. Skin excretes through sweating. [12:20] Lung anatomy: trachea, bronchi, alveoli, gas exchange. [16:54] Urea cycle energy requirement, deamination of amino acids. [20:35] Urea density calculates volume of small ice cube. [24:15] Carbon dioxide is a metabolic byproduct. [27:46] Liver metabolizes drugs into water-soluble compounds.
Transcribed - Published: 17 April 2025
This episode is packed with essential high-yield information for your MCAT prep, covering the biological, physiological, and psychological aspects of sleep. We’ll explore various sleep theories, like the Memory Consolidation and Brain Plasicticity Theories, and even discuss the controversial “Sleeping When You Die” theory. We’ll also delve into dream theories, including Freud’s interpretations and the Activation Synthesys Hypothesis. Plus, we’ll address common sleep disorders such as insomnia, sleep apnea, and narcolepsy, alongside the effects of different drugs on your sleep patterns. We’ll cover critical brain structures involved in sleep, such as the hypothalamus and the suprachiasmatic nucleus, and break down the stages of sleep measured through EEG, EMG, and EOG. Visit MedSchoolCoach.com for more help with the MCAT. [00:00] Introduction to the MCAT Basics podcast with host, Sam Smith [04:05] Pineal gland, amygdala, basal forebrain in sleep. [07:40] Measuring postsynaptic potential, not action potentials. EEG waves distinguish sleep stages. EMG records muscle electrical activity. [10:46] Alpha waves awake, theta waves asleep. Hallucinations in stage N1 sleep. [15:01] Unconfirmed sleepwalking. Stages of sleep explained. [18:18] Sleep cycles lengthen REM stage, diagrams illustrate. [19:50] We don't remember all our dreams. [23:55] Shifting circadian rhythms due to changes in light. [29:10] Blind people's melatonin release entrained with light. [29:41] Cortisol secretion cycle follows a circadian rhythm. [35:09] Freud: Dreams represent unconscious desires; manifest vs latent. [38:53] Divorce dreams related to spouse thinking time. Broad sleep disorder categories: insomnia, breathing, hypersomnolence. [41:18] Hypersomnia, narcolepsy, drugs' impact on sleep. [44:14 Brief primer on drug effects on sleep.
Transcribed - Published: 15 April 2025
In this episode, we’ll cover crucial aspects such as hormones, their origins and mechanisms of action, and the various structures within the endocrine system. We'll also decode complex cell-to-cell communication and distinguish between different hormone types—peptide, protein, steroid, and lipid-derived. Furthermore, we'll explore key endocrine disorders like diabetes and hyper- and hypogonadism, discussing their causes, symptoms, and relevance to the MCAT. In addition, we'll touch upon the functions and hormones of several glands, including the pituitary, thyroid, adrenal glands, and pancreas. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: 00:00 Introduction to the MCAT Basics Podcast with host, Sam Smith 03:34 Exosomes act as information carriers for cells. 09:00 Large, charged substances dissolve in blood easily. 10:30 Protein kinase A activates multiple molecules quickly. 15:57 Podcast discusses prostaglandin, thromboxins, leukotrienes and glands. 18:22 Hormones explained: flat peg and pineal gland. 23:15 Endocrine diseases: hyperthyroidism, hypothyroidism, hyperinhypogonadism, diabetes. 26:33 Autoimmune disorder characterized by overactive thyroid production. 29:28 Hypothalamus role in hormone production and disorders. 34:01 Type 1 diabetes: Genetic and environmental factors. 35:47 Diagnosis and causes of type two diabetes. 39:18 Med School Coach elevates your application level.
Transcribed - Published: 10 April 2025
In this episode, we'll break down the intricate processes of nutrient digestion and absorption, from the mechanical and chemical digestion in the stomach to the vital role of the small and large intestines. We'll also discuss the regulatory mechanisms involving hormones and nervous innervation and the essential structures like the liver, gallbladder, and pancreas. And don't forget, this episode is packed with tips on everything you need to know about this high-yield topic for the MCAT. So grab your notes, get comfortable, and let's embark on this fascinating journey through the digestive system. Stay tuned for a deep dive into how our bodies turn food into the vital nutrients we need to thrive. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] Introduction to the MCAT Basics [05:11] Digestive system involves mechanical and chemical processes. [06:55] Food travels through digestive system over time. [10:48] Small intestines: duodenum, jejunum, ileum, enterocytes crucial. [14:38] Sphincters in digestive system control food movement. [16:26] Podcast discusses physiology of digestive system structures. [20:57] Salivary enzyme breaks down starch into glucose. [23:46] Muscle contractions propel food through digestive system. [27:40] Lipase enzyme breaks down fats in stomach. [29:11] Stomach doesn't absorb nutrients, protects itself. [32:55] Enzymes linked to cells for carbohydrate breakdown. [38:05] Bile emulsifies fat, chylomicrons enter lymphatic system. [41:35] Gut bacteria metabolize cellulose, form fatty acids. [45:02] Living without large intestine; regulation of digestion. [46:50] CCK stimulates pancreatic juice release, important digestion. [49:57] Prepare for MCAT and excel with us!
Transcribed - Published: 8 April 2025
In this episode of MCAT Basics, we’ll cover Electrochemistry. We start with the role of salt bridges in electrochemical cells and cover the intricacies of cell notation. We’ll also discuss how ions maintain charge balance, the importance of reduction and oxidation potentials, and how these elements come together in galvanic and electrolytic cells. We’ll also take a closer look at concentration cells and the critical Nernst equation, which helps us understand cell potentials under non-standard conditions. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the Conversation: [00:00] Introduction to MCAT Basics [01:09} Introduction to Electrochemistry [03:20] Concentration cell: same metal, different ion concentrations [13:05] Visualizing galvanic cells using royal analogy [22:19] Reduction potential, oxidation potential, cell potential explained [30:47] Electrochemical cells, Gibbs free energy, and Nernst equation [41:16] Electroplating and electric current to coat metals [45:40] Electrochemistry in Nanobiology: measuring oxidation of molecules
Transcribed - Published: 3 April 2025
This MCAT Basics podcast covers biological membranes. First, the podcast introduces a few topics regarding membranes: what they are, how they are formed, their presence in the cell, and cell-to-cell junctions. Second, it addresses transport through the membrane, including simple diffusion, active vs. passive transport, and transport membrane proteins. Next, the discussion moves to membrane proteins, including receptors, transporters, and the differences between integral, peripheral, and lipid-anchored proteins. Finally, the podcast covers membrane dynamics, such as endocytosis and the transmembrane system, and discusses membrane potential. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the Conversation: [00:00] Intro into MCAT Basics [01:08] Introducing Biological Membranes [01:53] What is a membrane and what is its structure [15:33] Cell to cell junctions and the involvement of plasma membranes [17:16] Transport through a membrane [26:49] Membrane proteins [31:05] Membrane dynamics and potential
Transcribed - Published: 1 April 2025
In this episode, we’ll talk about ATP or adenosine triphosphate. We will begin with a detailed examination of ATP's structure and composition as a nucleotide, followed by an explanation of the metabolic pathways involved in its production—both aerobic and anaerobic. We will also cover the pivotal process of ATP hydrolysis, emphasizing its energy release and crucial role in various cellular processes, including the sodium-potassium pump and protein phosphorylation. Additionally, we will address the limitations of ATP supplementation and the broader implications of ATP in biological transport and biosynthesis processes. This episode promises to provide a clear and thorough understanding of ATP's essential functions, ensuring you are well-prepared for your MCAT studies. Visit MedSchoolCoach.com for more help with the MCAT. Jump Into the Conversation: [00:00] Intro into Adenosine Triphosphate, otherwise known as ATP [2:09] The structure of ATP [06:48] Where and how ATP is produced [24:04] Thermodynamics of ATP [35:16] The functions of ATP [35:31] Sodium-potassium pump or the sodium-potassium ATPase [39:45] Protein kinases and protein phosphorylation [42:48] ATP binding cassette transporter protein or ABC transporter proteins
Transcribed - Published: 27 March 2025
In this episode, we explore the topic of intelligence, which is primarily featured in the psychology and sociology section of the MCAT. We cover several key theories, including entity vs. incremental theory, general intelligence theory, two-factor theory, multiple intelligences theory, Triarchic theory, CHC theory, and biological theories. Additionally, we examine the nature vs. nurture debate on hereditary intelligence factors and discuss how intelligence is measured. Visit MedSchoolCoach.com for more help with the MCAT. Jump Into the Conversation: [00:00] Intro to Intelligence [02:47] Entity vs. Incremental Theory [06:36] G Factor Theory [10:26] Multiple Intelligences Theory [12:18] Triarchic Theory [14:39] CHC Theory [18:58] Theories of Intelligence [21:01] Hereditary factors of intelligence [28:33] How intelligence is measured [32:06] Why intelligence tests can be problematic
Transcribed - Published: 25 March 2025
Redox reactions or reduction and oxidation are reactions in which electrons are simultaneously transferred from one chemical species to another. This episode begins with exploring this concept, including an in-depth look at oxidizing and reducing agents and the factors determining a compound's effectiveness as an oxidizing agent. It also covers the oxidation states of molecules and functional groups, common redox reagents in organic chemistry, and the role of redox in biological systems. The episode also addresses numerical concepts from general chemistry related to redox, such as determining oxidation numbers and understanding electrochemical cells. Visit MedSchoolCoach.com for more help with the MCAT. [00:00] Introduction [01:09] What is the conceptual definition of redox [06:22] What is an oxidizing agent, and what is a reducing agent? [08:50] What makes a molecule better than another at being an oxidizing agent or a reducing agent? [13:58] Which oxidation reduction reagents should you know and what do they [21:44] Redox in biological systems [35:01] How to determine the oxidation state [41:16] The application of oxidation-reduction in electrochemical cells
Transcribed - Published: 20 March 2025
In this episode, we focus on the physiology of sound and hearing. We begin by exploring sound-related concepts, including sound waves, pitch, ultrasound, and the decibel system. Next, we delve into the anatomy and physiology of the ear, providing a clear understanding of how we perceive sound. This material will appear in two of the four MCAT sections: the Bio/Biochem and Physics/Chemistry sections. Visit MedSchoolCoach.com for more help with the MCAT. [00:00] Introduction [01:50] Physics of sound waves [06:07] Wavelength and frequency equation [08:08] Equation for the speed of sound [11:01] Overall takeaway for the MCAT [11:15] Ultrasound imaging [14:23] The decibel system [18:05] Anatomy and physiology of the ear
Transcribed - Published: 18 March 2025
This podcast focuses on the eye. It begins with a brief overview of the eye's anatomy and physiology. The discussion then shifts to rods, cones, and the phototransduction pathway. The final section addresses perception. Key topics include visual field processing, differences between binocular and monocular cues, and feature detection (covering both Magno and Parvo pathways). Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutoring from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:06] Topics covered in this episode [02:10] Anatomy & physiology of the eye [16:02] Phototransduction pathway [26:59] Perception [28:13] Visual field processing [31:34] Binocular versus monocular queues [35:02] Visual feature detection - Gestalt principles [38:18] Parallel Processing [39:12] Parvo versus Magno pathways
Transcribed - Published: 4 February 2025
To continue our discussion on the immune system, in this episode, we will cover the second type of immune system – the adaptive immune system. We start with covering some vocabulary that you’ll need to know to understand the immune system, then we move into the cells that make up the adaptive immune system. Then we break down the two branches of the adaptive immune system - humoral immunity including the discussion of B cells and cell-mediated immunity highlighting T cells. Don’t miss our previous episode on the other type of immune system, the innate immune system. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutoring from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:06] Topics covered in this episode [02:01] Review on the difference between innate vs. adaptive immue system [02:32] General Vocabulary terms for the adaptive immune system [07:05] The cells that make up the adaptive immune system [13:09] The humoral immune system and B cells [26:07] Cell mediated immunity and T Cells [34:38] Antigen activation
Transcribed - Published: 30 January 2025
The immune system is split up into two main categories - the adaptive immune system and the innate immune system. This episode will cover the intricacies of the innate immune system beginning with an overview of its constituent cells. We will then explore three pivotal elements of the system: anatomical barriers, the general inflammatory response, and the complement system. This will show up in the bio/biochem section of the MCAT. For additional reading on this topic, you can refer to the NIH’s Innate Immune System paper. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutoring from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:06] Topics covered in this episode [02:09] The goal of the innate immune system [04:57] The cells that make up the innate immune system [11:47] Anatomical barriers to the innate immune system [19:53] General inflammatory response of the innate immune system [42:49] Complement system [45:33] MCAT Advice of the day - take as much time as you need to study for the MCAT
Transcribed - Published: 28 January 2025
This episode of MCAT Basics covers several separation and purification techniques you may see on the MCAT. We’ll cover these techniques in three distinct categories: small molecules, proteins, and cells. Within the small molecule category, we’ll discuss extraction, crystallization and recrystallization, and chromatography (TLC and HPLC). For proteins, we cover SDS-page, precipitation, soelectric focusing, and chromatography variations. Lastly, we’ll explain, within the world of cells, centrifugation, flow cytometry, and microfluidics. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: [00:00] MCAT Tutorig from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:07] Topics covered in this episode [02:24] Techniques for small molecules - extraction, crystallization and recrystallization, and chromatography (TLC and HPLC) [28:24] Techniques for proteins - SDS-page, precipitation, isoelectric focusing, and chromatography variations [54:47] Techniques for cells - centrifugation, flow cytometry, and microfluidics.
Transcribed - Published: 23 January 2025
This episode of MCAT Basics covers the world of circuits. We will explore electrical circuits and their fundamental principles. We’ll start with dissecting the essential parameters that form the backbone of circuits: voltage, current, resistance, and power. These are the building blocks upon which all circuit dynamics are based. Next, we'll explore a variety of circuit elements, from resistors to batteries, capacitors, and switches. Each of these components plays a vital role in shaping the behavior of circuits and understanding their functionality. Finally, we'll delve into Ohm’s Law and Kirchhoff’s Law, two fundamental principles that govern circuit behavior. By grasping these laws, you'll gain essential insights into how circuits operate and how to analyze their dynamics effectively. Visit MedSchoolCoach.com for more help with the MCAT and use promo code PODCAST to receive a five percent discount on your first session. Jump into the conversation: [00:00] MCAT Tutorig from MedSchoolCoach [00:34] Welcome to MCAT Basics [01:07] Topics covered in this episode [02:14] Circuit Variables - voltage, current resistance, power [22:59] Circuit Elements - resistors, sources of voltage, capacitors, and switches [44:28] Ohm's Law [45:24] Kirchhoff's Law
Transcribed - Published: 21 January 2025
DNA replication and the central dogma are fundamental concepts in molecular biology, and breaking down the different replication methods and the processes of transcription and translation is crucial for understanding how genetic information is expressed and passed on in cells. In the first part of our episode, we'll break down DNA replication, exploring the concepts of conservative, semi-conservative, and dispersive replication, unraveling the mechanisms that drive this fundamental process. Later, we'll focus on transcription and translation, delving into the nuances between prokaryotic and eukaryotic organisms. We'll uncover the mechanisms by which genetic information is transcribed from DNA to RNA and then translated into proteins, all while considering the diverse cellular locations where these processes take place. Visit MedSchoolCoach.com for more help with the MCAT and use promo code PODCAST to receive a five percent discount on your first session. Jump into the conversation: [01:07] Episode Overview [01:54] DNA replication explanation [05:53] Three phases of replication - initiation, elongation, and termination [25:12] Central Dogma description [25:50] Transcription Process [36:31] The differences between eukaryotic and prokaryotic transcription [37:58] Translation Process
Transcribed - Published: 16 January 2025
Thermodynamics is fundamental to mastering chemistry concepts and understanding the energy dynamics within biological systems crucial for the MCAT. In this episode, host Sam Smith dives into the laws of thermodynamics, covering everything from the zeroth law to the third. You'll explore key concepts like enthalpy, entropy, and Gibbs Free Energy and learn how they apply to reaction spontaneity and equilibrium. Sam also gives practical examples, including how the equilibrium constant and reaction quotient (Q vs. K) affect reactions, and covers types of heat transfer—conduction, convection, and radiation—essential for the Chem/Phys section. Visit MedSchoolCoach.com for more help with the MCAT and use promo code PODCAST to receive a five percent discount on your first session. Jump into the conversation: (00:00) Intro (01:03) Introduction to thermodynamics (03:58) The four laws of thermodynamics (12:46) Thermodynamic variables: entropy, enthalpy, and Gibbs Free Energy (24:11) Phase changes in thermodynamics (25:30) Gibbs Free Energy and spontaneity of reactions (38:01) The three types of heat transfer: conduction, convection, and radiation
Transcribed - Published: 7 January 2025
Cells and tissues form the building blocks of life, which are crucial for mastering key concepts in the MCAT’s biology and biochemistry sections. In this episode, host Sam Smith breaks down the differences between prokaryotic and eukaryotic cells, exploring animal, plant, and bacterial cell structures alongside unique cell types like erythrocytes. You’ll gain insights into the various tissue types—epithelial, muscle, connective, and nervous—along with their roles in the body. Plus, Sam highlights essential details on ribosome size, cell reproduction methods, and structural elements like vacuoles and cell walls. This episode equips you with strategies to distinguish cell and tissue types confidently, setting you up for success on exam day. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:03) Cell types overview (02:44) Prokaryotic vs. eukaryotic cells (09:53) Animal, plant, and Ffungi cells (16:20) Bacteria and archaea characteristics (19:09) Erythrocytes: Structure and function (20:15) Tissue types intro (23:35) Epithelial tissue types and functions (33:17) Connective and nervous tissues
Transcribed - Published: 2 January 2025
Understanding the kidneys' role in the body’s balance is essential for the MCAT and beyond. In this episode, host Sam Smith discusses renal physiology, covering everything from kidney anatomy to the nephron’s critical functions in filtration, reabsorption, secretion, and excretion. You’ll explore the roles of the renal cortex and medulla, learn about the loop of Henle, and uncover the importance of ions, plasma volume, and pH regulation in kidney function. Plus, we’ll examine hormones like ADH and aldosterone and their impact on fluid balance, as well as essential measurements like glomerular filtration rate (GFR) for assessing kidney health. Visit MedSchoolCoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro to renal physiology (02:43) Kidney anatomy overview (08:38) Nephron structure and function (09:50) Six key functions of the kidney (12:03) Nephron Processes: Filtration (17:32) Nephron Processes: Reabsorption and secretion (22:51) The Loop of Henle (26:05) Understanding osmolarity in the Loop of Henle (26:55) Ion transport in the ascending limb (32:04) The role of the collecting duct (37:18) Hormonal regulation of the nephron (46:50) Key measurements of renal function (50:15) MCAT Advice of the Day
Transcribed - Published: 31 December 2024
The essentials of identity theories and psychosocial development reveal the foundational elements of human behavior and self-perception. In this episode, Sam Smith discusses the core theories around identity, from Erikson’s stages of psychosocial development and Freud’s psychosexual stages to Piaget’s cognitive framework and Kohlberg’s stages of moral growth. Sam talks about how each theory is represented in MCAT questions, explaining key differences and how they impact our understanding of self-concept, self-esteem, and social roles. Whether it's Cooley’s looking-glass self or Vygotsky’s zone of proximal development, this episode helps make sense of the MCAT’s approach to personality and identity development. Visit medschoolcoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:04) Psychosocial development and identity (01:42) The different theories of identity formation (01:57) Basic ideas regarding identity and self-concept (08:29) Erikson's psychosocial development theory (16:47) Testing strategies and MCAT questions (17:57) Freud's psychosexual development theory (24:01) Piaget's stages of cognitive development (28:15) Kohlberg's theory of moral development (32:42) Cooley's looking-glass self (33:21) George Herbert Mead's the I and the Me (34:34) Vygotsky's social development theory
Transcribed - Published: 26 December 2024
A deep understanding of functional groups is crucial for excelling in the MCAT, as they play a key role in the reactivity, physical properties, and biological functions of molecules. In this episode, Sam Smith breaks down the essential functional groups, covering their physical and chemical properties, biological relevance, and common reaction mechanisms. From alcohols and carbonyl-containing groups like aldehydes and ketones, to nitrogen-containing amines and amides, Sam explains how these groups are presented in exam questions and their impact on biological systems. Visit medschoolcoach.com for more help with the MCAT. Jump into the conversation: (00:00) Intro (01:54) How the MCAT asks questions about functional groups (02:01) Physical vs. chemical properties (04:09) Alcohols: Structure and classification (06:13) MCAT questions related to the physical properties of alcohols (10:03) MCAT question examples related to boiling points (11:54) Biological reactions involving alcohols (34:23) Reactivity of carbonyl-containing functional groups
Transcribed - Published: 24 December 2024
Disclaimer: The podcast and artwork embedded on this page are from MedSchoolCoach, and are the property of its owner and not affiliated with or endorsed by Tapesearch.
Copyright © Tapesearch 2025.